top of page

Referências

  1. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome: Integrating genetics, neuropsychology, and endocrinology. Endocr Rev. 2018;39(4):389–423.

  2. Alberts B, Johnson A, Lewis J, Raff M, Robert K, Walter P. Biologia molecular da célula. Biologia Molecular da Celula. 2008.

  3. W.C.B. Thomson: Thompson. Notes Queries. 1903;s9-XII(313):518.

  4. Nussbaum RL. Thompson & Thompson Genética Médica 8a ed. Journal of Chemical Information and Modeling. 2019.

  5. De Brito Oliveira Costa E, Pacheco C. Epigenética: regulação da expressão gênica em nível transcricional e suas implicações. Semin Ciências Biológicas e da Saúde. 2013;34(2):125.

  6. Curado RM de OF, Sestari SJ, Gamba BF, Bicudo LAR, Approbato MS, Amaral WN do, et al. Síndrome de Klinefelter, uma condição subdiagnosticada: revisão de literatura. Rev Ref Saúde- FESGO. 2020;03:68–75.

  7. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome: Integrating genetics, neuropsychology, and endocrinology. Endocr Rev. 2018;39(4):389–423.

  8. Mehta A, Malek-Jones M, Bolyakov A, Mielnik A, Schlegel PN, Paduch DA. Methylation-specific PCR allows for fast diagnosis of X chromosome disomy and reveals skewed inactivation of the X chromosome in men with klinefelter syndrome. J Androl. 2012;33(5):955–62.

  9. Blaschke RJ, Rappold G. The pseudoautosomal regions, SHOX and disease. Curr Opin Genet Dev. 2006;16(3):233–9.

  10. Zitzmann M, Bongers R, Werler S, Bogdanova N, Wistuba J, Kliesch S, et al. Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome. J Clin Endocrinol Metab. 2015;100(3):E518–23.

  11. Tüttelmann F, Gromoll J. Novel genetic aspects of Klinefelter’s syndrome. Mol Hum Reprod. 2010;16(6):386–95.

  12. Navarro-Cobos MJ, Balaton BP, Brown CJ. Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. Am J Med Genet Part C Semin Med Genet. 2020;184(2):226–38.

  13. Marquis P V, Philip D H, Lynn E D. Dysregulation of X-Linked Gene Expression in Klinefelter’s Syndrome and Association With Verbal Cognition. Am J Med Genet Part B Neuropsychiatr Genet. 2007;144(6):728–34.

  14. Chang S, Skakkebæk A, Trolle C, Bojesen A, Hertz JM, Cohen A, et al. Anthropometry in Klinefelter syndrome - Multifactorial influences due to CAG length, testosterone treatment and possibly intrauterine hypogonadism. J Clin Endocrinol Metab. 2015;100(3):E508–17.

  15. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome: Integrating genetics, neuropsychology, and endocrinology. Endocr Rev. 2018;39(4):389–423.

  16. Zitzmann M, Bongers R, Werler S, Bogdanova N, Wistuba J, Kliesch S, et al. Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome. J Clin Endocrinol Metab. 2015;100(3):E518–23.

  17. Zitzmann M, Bongers R, Werler S, Bogdanova N, Wistuba J, Kliesch S, et al. Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome. J Clin Endocrinol Metab. 2015;100(3):E518–23.

  18. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome: Integrating genetics, neuropsychology, and endocrinology. Endocr Rev. 2018;39(4):389–423.

  19. Chang S, Skakkebæk A, Trolle C, Bojesen A, Hertz JM, Cohen A, et al. Anthropometry in Klinefelter syndrome - Multifactorial influences due to CAG length, testosterone treatment and possibly intrauterine hypogonadism. J Clin Endocrinol Metab. 2015;100(3):E508–17.

  20. Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 1994; 22(15):3181–3186.

  21. Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E. X-chromosome inactivation patterns and androgen

  22. receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab. 2004;89(12): 6208–6217.

  23. Bojesen A, Hertz JM, Gravholt CH. Genotype and phenotype in Klinefelter syndrome - impact of androgen receptor polymorphism and skewed X inactivation. Int J Androl. 2011;34(6 Pt 2):e642–e648.

  24. Zinn AR, Ramos P, Elder FF, Kowal K, Samango- Sprouse C, Ross JL. Androgen receptor CAGn repeat length influences phenotype of 47,XXY (Klinefelter) syndrome. J Clin Endocrinol Metab. 2005;90(9): 5041–5046.

  25. Wikstr¨om AM, Painter JN, Raivio T, Aittom¨aki K, Dunkel L. Genetic features of the X chromosome affect pubertal development and testicular degeneration in adolescent boys with Klinefelter syndrome. Clin Endocrinol (Oxf). 2006;65(1):92–97.

  26. Bruining H, Van Rijn S, Swaab H, Giltay J, Kates W, Kas MJH, et al. The parent-of-origin of the extra X chromosome may differentially affect psychopathology in klinefelter syndrome. Biol Psychiatry [Internet]. 2010;68(12):1156–62. Available from: http://dx.doi.org/10.1016/j.biopsych.2010.08.034

  27. Stemkens D, Roza T, Verrij L, Swaab H, van Werkhoven MK, Alizadeh BZ, et al. Is there an influence of X-chromosomal imprinting on the phenotype in Klinefelter syndrome? A clinical and molecular genetic study of 61 cases. Clin Genet. 2006;70(1):43–8.

  28. Wikström AM, Painter JN, Raivio T, Aittomäki K, Dunkel L. Genetic features of the X chromosome affect pubertal development and testicular degeneration in adolescent boys with Klinefelter syndrome. Clin Endocrinol (Oxf). 2006;65(1):92–7.

  29. Skakkebæk A, Viuff M, Nielsen MM, Gravholt CH. Epigenetics and genomics in Klinefelter syndrome. Am J Med Genet Part C Semin Med Genet. 2020;184(2):216–25.

  30. Davies W. Genomic imprinting on the X chromosome: Implications for brain and behavioral phenotypes. Ann N Y Acad Sci. 2010;1204(SUPPL.1):14–9.

  31. Paduch DA, Fine RG, Bolyakov A, Kiper J. New concepts in Klinefelter syndrome. Curr Opin Urol. 2008;18(6):621–7.

  32. Samplaski MK, Lo KC, Grober ED, Millar A, Dimitromanolakis A, Jarvi KA. Phenotypic differences in mosaic Klinefelter patients as compared with non-mosaic Klinefelter patients. Fertil Steril [Internet]. 2014;101(4):950–5. Available from: http://dx.doi.org/10.1016/j.fertnstert.2013.12.051

  33. Skakkebæk A, Viuff M, Nielsen MM, Gravholt CH. Epigenetics and genomics in Klinefelter syndrome. Am J Med Genet Part C Semin Med Genet. 2020;184(2):216–25.

  34. Skakkebæk A, Nielsen MM, Trolle C, Vang S, Hornshøj H, Hedegaard J, et al. DNA hypermethylation and differential gene expression associated with Klinefelter syndrome. Sci Rep. 2018;8(1):1–15.

  35. Sharma A, Jamil MA, Nuesgen N, Schreiner F, Priebe L, Hoffmann P, et al. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations. Clin Epigenetics [Internet]. 2015;7(1):1–15. Available from: http://dx.doi.org/10.1186/s13148-015-0112-2

  36. Zore T, Palafox M, Reue K. Sex differences in obesity, lipid metabolism, and inflammation—A role for the sex chromosomes? Mol Metab [Internet]. 2018;15(April):35–44. Available from: https://doi.org/10.1016/j.molmet.2018.04.003

  37. Cimino L, Salemi M, Cannarella R, Condorelli RA, Giurato G, Marchese G, et al. Decreased miRNA expression in Klinefelter syndrome. Sci Rep [Internet]. 2017;7(1):1–6. Available from: http://dx.doi.org/10.1038/s41598-017-16892-3

  38. Cimino L, Salemi M, Cannarella R, Condorelli RA, Giurato G, Marchese G, et al. Decreased miRNA expression in Klinefelter syndrome. Sci Rep [Internet]. 2017;7(1):1–6. Available from: http://dx.doi.org/10.1038/s41598-017-16892-3

bottom of page